Unique paper Code : 32371303_OC
Name of the Paper : Mathematical Analysis
Name of the Course : B.Sc. (H) Statistics Under CBCS
Semester
: III
Duration : 3 Hours
Maximum Marks : 75

Instructions for Candidates

1. Attempt any four questions.
2. All Questions carries carry equal marks $\mathbf{1 8 . 7 5}$ marks each.
3. (a) Define a lower bound and an infimum of a non-empty bounded set S of real numbers. Prove that a real number t is the infimum of S iff
(i) $x \geq t \quad \forall x \in S$
(ii) for each $\epsilon>0$, there is a real number $x \in S$ such that $x<\mathrm{t}+\epsilon$.
(b) Define limit point of a set. Prove that every infinite bounded set of real numbers has a limit point.
4. (a) Show that the set of rational numbers is not ordered complete.
(b) Define neighbourhood of a point. If M and N are neighbourhoods of a point p, then prove that $\mathrm{M} \cap \mathrm{N}$ is also a neighbourhood of p.
5. (a) Test for the convergence of the series
i) $\sum_{n=1}^{\infty}(1 / n)^{1 / n}$
ii) $\frac{\alpha}{\beta}+\frac{1+\alpha}{1+\beta}+\frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)}+\ldots$.
(b) Obtain Maclaurin's series expansion of $f(x)=(1+x)^{m} \quad \forall x \in R-$.
6. (a) State and prove Rolle's Theorem. Give its Geometrical Interpretation. Further prove that if \mathbf{p} is a polynomial and \mathbf{p}^{\prime} the derivative of \mathbf{p}, then between any two consecutive zeroes of \mathbf{p}^{\prime}, there lies at most one zero of \mathbf{p}.
(b) Let f be the function defined on R by setting

$$
f(x)= \begin{cases}|x-1|+|x+2|, & x \neq 0 \\ 0 & x=0\end{cases}
$$

Examine the function f for continuity and derivability at $\mathrm{x}=1$ and $\mathrm{x}=-2$.
5. (a) Derive a formula which can be used for interpolating a value of $f(x)$ near the end of the tabulated values.
(b) Use method of separation of symbols to prove the identitiesthat

$$
\begin{aligned}
& u_{0}+\binom{n}{1} u_{1} x+\binom{n}{2} u_{2} x^{2}+\cdots+\binom{n}{n} u_{n} x^{n}=(1+x)^{n} u_{0}+\binom{n}{1}(1+x)^{n-1} x \Delta u_{0}+ \\
& \binom{n}{2}(1+x)^{n-2} x^{2} \Delta^{2} u_{0}+\cdots \ldots \ldots+x^{n} \Delta^{n} u_{0}
\end{aligned}
$$

6 (a) Defined the operators $\mathrm{E}, \Delta, \mu, \delta$ and ∇ and show that

$$
\mu=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)=\frac{2+\Delta}{2 \sqrt{1+\Delta}}=\sqrt{1+\frac{1}{4} \delta^{2}}
$$

(b) Calculate approximations to the value of $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using simpson's three eight \underline{h} rule.

